魔方网-培训咨询服务平台

全國(guó)統(tǒng)一學(xué)習(xí)專(zhuān)線(xiàn) 8:30-21:00
位置:魔方網(wǎng) > 外語(yǔ)類(lèi) > 公共英語(yǔ) > 什么是OSI 開(kāi)放式系統(tǒng)互聯(lián)  正文

什么是OSI 開(kāi)放式系統(tǒng)互聯(lián)

2023-08-16 15:48:26來(lái)源:魔方格

摘要:OSI是OpenSystemInterconnect的縮寫(xiě),意為開(kāi)放式系統(tǒng)互聯(lián)。接下來(lái)小編為大家整理了什么是OSI,希望對(duì)你有幫助哦!OSImodelTheOpenSystemsInterc


(資料圖片僅供參考)

  OSI是Open System Interconnect的縮寫(xiě),意為開(kāi)放式系統(tǒng)互聯(lián)。接下來(lái)小編為大家整理了什么是OSI,希望對(duì)你有幫助哦!

  OSI model

  The Open Systems Interconnection Reference Model (OSI Model or OSI Reference Model for short) is a layered abstract description for communications and computer network protocol design, developed as part of the Open Systems Interconnect initiative. It is also called the OSI seven layers model.

  Purpose

  The OSI model divides the functions of a protocol into a series of layers. Each layer has the property that it only uses the functions of the layer below, and only exports functionality to the layer above. A system that implements protocol behavior consisting of a series of these layers is known as a 'protocol stack' or 'stack'. Protocol stacks can be implemented either in hardware or software, or a mixture of both. Typically, only the lower layers are implemented in hardware, with the higher layers being implemented in software.

  This OSI model is roughly adhered to in the computing and networking industry. Its main feature is in the interface between layers which dictates the specifications on how one layer interacts with another. This means that a layer written by one manufacturer can operate with a layer from another (assuming that the specification is interpreted correctly). These specifications are typically known as Requests for Comments or "RFC"s in the TCP/IP community. They are ISO standards in the OSI community.

  Usually, the implementation of a protocol is layered in a similar way to the protocol design, with the possible exception of a 'fast path' where the most common transaction allowed by the system may be implemented as a single component encompassing aspects of several layers.

  This logical separation of layers makes reasoning about the behavior of protocol stacks much easier, allowing the design of elaborate but highly reliable protocol stacks. Each layer performs services for the next higher layer and makes requests of the next lower layer. As previously stated, an implementation of several OSI layers is often referred to as a stack (as in TCP/IP stack).

  The OSI reference model is a hierarchical structure of seven layers that defines the requirements for communications between two computers. The model was defined by the International Organization for Standardization in the ISO standard 7498-1. It was conceived to allow interoperability across the various platforms offered by vendors. The model allows all network elements to operate together, regardless of who built them. By the late 1970's, ISO was recommending the implementation of the OSI model as a networking standard.

  Of course, by that time, TCP/IP had been in use for years. TCP/IP was fundamental to ARPANET and the other networks that evolved into the Internet. (For significant differences between TCP/IP and ARPANET, see RFC 871.)

  Only a subset of the whole OSI model is used today. It is widely believed that much of the specification is too complicated and that its full functionality has taken too long to implement, although there are many people who strongly support the OSI model.

  On the other hand, many feel that the best thing about the whole ISO networking effort is that it failed before it could do too much damage.

  Description of OSI layers

  Layer 1: Physical layer

  The Physical layer defines all the electrical and physical specifications for devices. This includes the layout of pins, voltages, and cable specifications. Hubs, repeaters and network adapters are physical-layer devices. The major functions and services performed by the physical layer are:

  establishment and termination of a connection to a communications medium.

  participation in the process whereby the communication resources are effectively shared among multiple users. For example, contention resolution and flow control.

  modulation, or conversion between the representation of digital data in user equipment and the corresponding signals transmitted over a communications channel. These are signals operating over the physical cabling -- copper and fibre optic, for example - or over a radio link.

  Parallel SCSI buses operate at this level. Various physical-layer Ethernet standards are also at this level; Ethernet incorporates both this layer and the data-link layer. The same applies to other local-area networks, such as Token ring, FDDI, and IEEE 802.11.

  Layer 2: Data Link layer

  The Data Link layer provides the functional and procedural means to transfer data between network entities and to detect and possibly correct errors that may occur in the Physical layer. The addressing scheme is physical which means that the addresses (MAC address) are hard-coded into the network cards at the time of manufacture. The addressing scheme is flat. Note: The best known example of this is Ethernet. Other examples of data link protocols are HDLC and ADCCP for point-to-point or packet-switched networks and Aloha for local area networks. On IEEE 802 local area networks, and some non-IEEE 802 networks such as FDDI, this layer may be split into a Media Access Control (MAC) layer and the IEEE 802.2 Logical Link Control (LLC) layer.

  This is the layer at which bridges and switches operate. Connectivity is provided only among locally attached network nodes; however, there's a reasonable argument to be made that these really belong at "layer 2.5" rather than strictly at layer 2.

  "Layer 2.5"

  While not a part of the official OSI model, the term "Layer 2.5" has been used to categorize some protocols that operate between layer 2 and layer 3. For example, Multiprotocol Label Switching (MPLS) operates on packets (layer 2) while working with IP addresses (layer 3) and uses labels to route packets differently.

  Layer 3: Network layer

  The Network layer provides the functional and procedural means of transferring variable length data sequences from a source to a destination via one or more networks while maintaining the quality of service requested by the Transport layer. The Network layer performs network routing, flow control, segmentation/desegmentation, and error control functions. Routers operate at this layer -- sending data throughout the extended network and making the Internet possible (there also exist layer 3 (or IP) switches). This is a logical addressing scheme - values are chosen by the network engineer. The addressing scheme is hierarchical. The best known example of a layer 3 protocol is the Internet Protocol (IP).

  Layer 4: Transport layer

  The Transport layer provides transparent transfer of data between end users, thus relieving the upper layers from any concern with providing reliable and cost-effective data transfer. The transport layer controls the reliability of a given link. Some protocols are state and connection oriented. This means that the transport layer can keep track of the packets and retransmit those that fail. The best known example of a layer 4 protocol is TCP.

  Layer 5: Session layer

  The Session layer provides the mechanism for managing the dialogue between end-user application processes. It provides for either duplex or half-duplex operation and establishes checkpointing, adjournment, termination, and restart procedures. This layer is responsible for setting up and tearing down TCP/IP sessions.

  Layer 6: Presentation layer

  The Presentation layer relieves the Application layer of concern regarding syntactical differences in data representation within the end-user systems. MIME encoding, data compression, encryption, and similar manipulation of the presentation of data is done at this layer. Examples: converting an EBCDIC-coded text file to an ASCII-coded file, or serializing objects and other data structures into and out of XML.

  Layer 7: Application layer

  The Application layer services facilitate communication between software applications and lower-layer network services so that the network can interpret an application's request and, in turn, the application can interpret data sent from the network. Through Application layer protocols, software applications negotiate their formatting, procedural, security, synchronization, and other requirements with the network. Some common Application layer protocols are HTTP, SMTP, FTP and Telnet.

同類(lèi)文章
最新更新
主站蜘蛛池模板: 砂石生产线_石料生产线设备_制砂生产线设备价格_生产厂家-河南中誉鼎力智能装备有限公司 | 球形钽粉_球形钨粉_纳米粉末_难熔金属粉末-广东银纳官网 | 温州中研白癜风专科_温州治疗白癜风_温州治疗白癜风医院哪家好_温州哪里治疗白癜风 | 上海阳光泵业制造有限公司 -【官方网站】| 不锈钢闸阀_球阀_蝶阀_止回阀_调节阀_截止阀-可拉伐阀门(上海)有限公司 | 布袋除尘器-单机除尘器-脉冲除尘器-泊头市兴天环保设备有限公司 布袋除尘器|除尘器设备|除尘布袋|除尘设备_诺和环保设备 | 重庆监控_电子围栏设备安装公司_门禁停车场管理系统-劲浪科技公司 | 手表腕表维修保养鉴定售后服务中心网点 - 名表维修保养 | 发光字|标识设计|标牌制作|精神堡垒 - 江苏苏通广告有限公司 | 光环国际-新三板公司_股票代码:838504 | 法钢特种钢材(上海)有限公司 - 耐磨钢板、高强度钢板销售加工 阀门智能定位器_电液动执行器_气动执行机构-赫尔法流体技术(北京)有限公司 | 板框压滤机-隔膜压滤机配件生产厂家-陕西华星佳洋装备制造有限公司 | 深圳APP开发_手机软件APP定制外包_小程序开发公司-来科信 | 泉州陶瓷pc砖_园林景观砖厂家_石英砖地铺石价格 _福建暴风石英砖 | 粘度计维修,在线粘度计,二手博勒飞粘度计维修|收购-天津市祥睿科技有限公司 | 钢板仓,大型钢板仓,钢板库,大型钢板库,粉煤灰钢板仓,螺旋钢板仓,螺旋卷板仓,骨料钢板仓 | 土壤检测仪器_行星式球磨仪_土壤团粒分析仪厂家_山东莱恩德智能科技有限公司 | SDG吸附剂,SDG酸气吸附剂,干式酸性气体吸收剂生产厂家,超过20年生产使用经验。 - 富莱尔环保设备公司(原名天津市武清县环保设备厂) | 硬度计_影像测量仪_维氏硬度计_佛山市精测计量仪器设备有限公司厂家 | 袋式过滤器,自清洗过滤器,保安过滤器,篮式过滤器,气体过滤器,全自动过滤器,反冲洗过滤器,管道过滤器,无锡驰业环保科技有限公司 | 咖啡加盟,咖啡店加盟连锁品牌-卡小逗 | 精密模具制造,注塑加工,吹塑和吹瓶加工,EPS泡沫包装生产 - 济南兴田塑胶有限公司 | 建筑资质代办-建筑资质转让找上海国信启航 | 托利多电子平台秤-高精度接线盒-托利多高精度电子秤|百科 | 四合院设计_四合院装修_四合院会所设计-四合院古建设计与建造中心1 | 周易算网-八字测算网 - 周易算网-宝宝起名取名测名字周易八字测算网 | 不锈钢发酵罐_水果酒发酵罐_谷物发酵罐_山东誉诚不锈钢制品有限公司 | Copeland/谷轮压缩机,谷轮半封闭压缩机,谷轮涡旋压缩机,型号规格,技术参数,尺寸图片,价格经销商 CTP磁天平|小电容测量仪|阴阳极极化_双液系沸点测定仪|dsj电渗实验装置-南京桑力电子设备厂 | 破碎机锤头_耐磨锤头_合金锤头-鼎成机械一站式耐磨铸件定制服务 微型驱动系统解决方案-深圳市兆威机电股份有限公司 | VOC检测仪-甲醛检测仪-气体报警器-气体检测仪厂家-深恒安科技有限公司 | 水稻烘干机,小麦烘干机,大豆烘干机,玉米烘干机,粮食烘干机_巩义市锦华粮食烘干机械制造有限公司 水环真空泵厂家,2bv真空泵,2be真空泵-淄博真空设备厂 | app开发|app开发公司|小程序开发|物联网开发||北京网站制作|--前潮网络 | 二维运动混料机,加热型混料机,干粉混料机-南京腾阳干燥设备厂 | 河南膏药贴牌-膏药代加工-膏药oem厂家-洛阳今世康医药科技有限公司 | 凝胶成像仪,化学发光凝胶成像系统,凝胶成像分析系统-上海培清科技有限公司 | 断桥铝破碎机_铝合金破碎机_废铁金属破碎机-河南鑫世昌机械制造有限公司 | 煤棒机_增碳剂颗粒机_活性炭颗粒机_木炭粉成型机-巩义市老城振华机械厂 | 实战IT培训机构_IT培训班选大学生IT技术培训中心_中公优就业 | 无锡网站建设_企业网站定制-网站制作公司-阿凡达网络 | 超声波气象站_防爆气象站_空气质量监测站_负氧离子检测仪-风途物联网 | 福建珂朗雅装饰材料有限公司「官方网站」 |